Note

Avignon (France)

A new approach to the synthesis and selective hydrolysis of *tert*-butyl glycosides

JEAN M. LACOMBE, NJARA RAKOTOMANOMANA, AND ANDRÉ A. PAVIA*

Laboratoire de Chimie Bioorganique, Université d'Avignon, 33, Rue Louis Pasteur, 84000

(Received July 7th, 1987; accepted for publication, February 10th, 1988)

Recent developments in methods of glycosylation^{1,2} have aroused interest in the use of the *tert*-butyl group for the temporary protection of the hemiacetal hydroxyl group. The *tert*-butyl group is cleaved under relatively mild acidic conditions which do not affect most hydroxyl-protecting groups utilized in oligosaccharide syntheses^{3,4}.

The inductive effect of the *tert*-butyl substituent activates the glycosidic oxygen and Derevitskaya *et al.*⁵ have taken advantage of this property to achieve an improved synthesis of octa-O-acetyl- β , β -trehalose. Several syntheses of *tert*-butyl glycosides using Koenigs-Knorr or Helferich conditions have been proposed based on the reaction of acylglycosyl halides with *tert*-butyl alcohol in the presence of silver oxide⁶, silver salicylate⁴, mercuric succinate³, and mercuric cyanide and mercuric bromide⁷.

Risbood et al.³ reported the glycosidation of β -D-galactose penta-acetate by tert-butyl alcohol in the presence of boron trifluoride etherate.

In the above-mentioned syntheses, the yields are moderate or low, and purification may be difficult due to the presence of orthoesters of similar polarity as by-products⁴.

We now describe an improved synthesis of *tert*-butyl glycosides by a Koenigs-Knorr-type reaction, using mercuric oxide (HgO) and mercuric bromide (HgBr₂) as catalysts, in which *tert*-butyl alcohol is both solvent and glycosylating reagent. The reaction is performed at room temperature under nitrogen in the presence of Drierite. Thus, fully acetylated α -D-glucosyl, α -D-galactosyl, and α -D-xylosyl halides were converted into the corresponding *tert*-butyl β -glycosides in yields of 80-90%. With 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl bromide, the

^{*}Author for correspondence

TABLEI

Compound	$^{13}C-N.n$ $C-I\beta$	¹³ C-N.m.r. data ^b C-1β C'-1 C-4	C-4	M.p. (degrees)	$[lpha]_{ m D}^{20}$ (c l, chloroform) (degrees)	Yield (%)	Yield (%) Elemental analysis
5 (maltose)	95.6	95.6 95.1	75.9	134-135 (AcOEt-hexane)	+ 45	4	C, 51.72; H, 6.42
6 (cellobiose)	95.5	100.9	76.9	202-203 (AcOEt-hexane)	-21	20	C, 51.68; H, 6.57
7 (lactose)	95.5	101.2	77.1	147-149 (ether-hexane)	- 10	48	C, 51.84; H, 6.37

^aChemical shifts for solutions in CHCl₃ (internal Me₄Si); δ in p.p.m. ^bPrimed numbers refer to the "non-reducing" carbohydrate moiety. ^cCalc. for C₃₀H₄₄O₁₈: C, 52.02; H, 6.35.

248 NOTE

yield was lower ($\sim 20\%$).

The reaction was extended to the synthesis of disaccharide derivatives. From hepta-O-acetyl- α -cellobiosyl bromide, and the maltose and lactose analogues, with dichloromethane as the co-solvent, the corresponding *tert*-butyl β -glycosides (see Table I) were obtained in yields of $\sim 50\%$. The products were purified easily by flash chromatography.

Analysis of the reaction of tetra-O-acetyl-D-galactopyranosyl bromide (aceto-bromogalactose) with *tert*-butyl alcohol as a model revealed ~1% each of *tert*-butyl 2,3,4,6-tetra-O-acetyl- α -D-galactopyranoside and octa-O-acetyl- β - β -galactotrehalose. The latter compound resulted, presumably, from reaction of 2,3,4,6-tetra-O-acetyl-D-galactose with acetobromogalactose.

$$\begin{array}{l} \mathbf{1}\alpha \ \mathbf{R}^1 = \mathbf{R}^3 = \mathbf{R}^5 = \mathbf{H}, \mathbf{R}^2 = \mathbf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^4 = \mathbf{R}^6 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC} \\ \mathbf{1}\beta \ \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^5 = \mathbf{H}, \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^4 = \mathbf{R}^6 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC} \\ \mathbf{2} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathbf{R}^5 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC} \\ \mathbf{3} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathbf{R}^7 = \mathsf{H}, \mathbf{R}^4 = \mathbf{R}^5 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC} \\ \mathbf{4} \ \mathbf{R}^2 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^1 = \mathbf{R}^4 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^3 = \mathbf{R}^5 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}^5 = \alpha - \mathsf{D} - \mathsf{GIc}\rho \\ \mathbf{5} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}^5 = \alpha - \mathsf{D} - \mathsf{GIc}\rho \\ \mathbf{5} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}^5 = \beta - \mathsf{D} - \mathsf{GIc}\rho \\ \mathbf{7} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}^5 = \beta - \mathsf{D} - \mathsf{GIc}\rho \\ \mathbf{7} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}^5 = \beta - \mathsf{D} - \mathsf{GIc}\rho \\ \mathbf{7} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}^5 = \beta - \mathsf{D} - \mathsf{GIc}\rho \\ \mathbf{7} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}^5 = \beta - \mathsf{D} - \mathsf{GIc}\rho \\ \mathbf{7} \ \mathbf{R}^1 = \mathsf{O}^{\mathsf{t}} \mathbf{B} \mathbf{U}, \mathbf{R}^2 = \mathsf{R}^3 = \mathsf{R}^6 = \mathsf{H}, \mathbf{R}^4 = \mathsf{OAC}, \mathbf{R}^7 = \mathsf{CH}_2\mathsf{OAC}, \mathbf{R}$$

Confirmation of structures was based conventionally on 1H - and ^{13}C -n.m.r. data. The resonances for C-1 α and C-1 β in the *tert*-butyl glycosides are shifted (\sim 5 p.p.m.) as compared to the corresponding carbon atoms in methyl glycosides (Table II), due to the γ -shielding effect of the three methyl groups. A similar effect was observed for the anomeric carbon of the "reducing" carbohydrate moiety of disaccharide derivatives (see Table I).

The ¹H-n.m.r. data for the acetylated *tert*-butyl glycosides of α - and β -D-galactopyranose (1), α -D-mannopyranose (4), β -maltose (5), β -cellobiose (6), and β -lactose (7) derivatives, reported in Table III, accord with expectations. Particularly noteworthy is the strong deshielding effect observed in compound 1 for H-3 (+0.28 p.p.m.) and H-5 (+0.48 p.p.m.) when going from the β to the α anomer, presumably due to 1,3-syn-diaxial interactions of H-3,5 and the axial anomeric *tert*-butyl group. In addition, H-1 was deshielded by 0.76 p.p.m. with $J_{1,2}$ 3.9 and 8.3 Hz, respectively, in 1α and 1β .

Preliminary results showed that the tert-butyl group can be removed select-

TABLE II

¹³C-N.m.r. data" and physical constants for acetylated *lett*-butyl monosaccharide glycosides

	C-N.n	m.r. data (δ)							
Compound C-1	I-O	C-2	C-3	C-4	C-5	C-6	M.p. (degrees)	$[lpha]_{\mathbf{D}}^{20}$ (c I, chloroform) (degrees)	Yield (%)
Gal 1α	8.06	68.6 ^b	68.5 _b	62.9	0.99	62.0	99-100 (éther-hexane) lit. ³ 134	+ 137 lit. ³ + 141,4	1>
1β	96.1	69.4	7.07	67.5	71.4	8.19	79-80 (éther-hexane) lit. ³ 70	-1.7 lit. $^3 - 20.8$	82
Glc 2	92.6	71.8	73.2	0.69	7.1.7	62.6	143-144 (AcOEt-ether) lit, ⁴ 143-144	-10.3 lit. ⁴ - 13	85
Xyl 3	8.56	71.7	72.3	69.2	62.2		128–129 (AcOEt–ether) lit. ⁷ 131–133	-38.3 lit. ⁷ -43.1	80
Man 4	92.4	71.4	69.3	8.99	68.2	62.8	oil ^c	+35	20
"For solutions in CH 53.45; H, 7.12.	ons in CHC 12.	N3 (interna	l Me ₄ Si); δ	in p.p.m.	^b Assigmen	ts may hav	e to be interchanged. 'Calc. 1	Cl ₃ (internal Me ₄ Si); δ in p.p.m. ^b Assigments may have to be interchanged. ^c Calc. for C ₁₈ H ₂₈ O ₁₀ : C, 53.47; H, 6.93. Found: C,	93. Found: C,

TABLE III

 $^l H\text{--N.m.r.}$ data^a (8 in P.p.m., Jin Hz) for terf-butyl glycosides 1 and 4-7

Compound	H-1	H - λ	H-3	H-4	H.5	H-6.6'	O'Bu
lα	5.38 (d, 3.9)	5.03 (dd, 11.2)	5.33 (dd, 3.5)	5.42 (dd, 1.2)	4.38 (dd, 6.7)	4.07,4.03 (um) ^c	1.21
1,8	4.62 (d, 8.3)	5.20 (dd, 10.9)	5.05 (dd, 3.9)	5.40 (dd, 1.0)	3.9 (dd, 6.8)	4,12(2 H, um) ^c	1.25
4	5.1 (d, 1.9)	5.03 (dd, 3.3)	5.37 (dd, 10.0)	5.23 (t, 10.0)	4.14 (m, 6.0, 2.2) 4.26 (dd, 11.85)	4.26 (dd, 11.85)	1.24
						4.03 (dd, 11.85)	
ring A ^b	4.65 (d, 8.0)	4.75 (dd, 8.7)	5.33 (t, 9.0)	3.93 (t, 9.2)	3.68 (m, 2.8)	4.39 (dd, 12.2)	1.20
v.						4.22 (2 H, um) ^c	
ring \mathbf{B}^b	5.39 (d, 4.0)	4.8 (dd, 10.4)	5.26 (dd, 9.6)	5.0 (t, 9.6)	3.97 (um) ^c	4.01 (1 H, um)°	
ring A	4.57 (d, 8.0)	4.81 (dd, 9.5)	5.15 (dd, 9.2)	3.67 (1, 9.2)	3.6 (um) ^c	4.42 (1.5, 12.4)	1.17
9						4.32 (4.4, 12.4)	
ring B	4.48 (d, 7.8)	4.92 (dd, 8.1)	5.02 (t, 9.1)	5.10 (t, 9.1)	3.6 (um) ^c	4.03 (2 H, um) ^c	
ring A	4.6 (d, 8.0)	4.82 (dd, 9.5)	5.19 (dd, 8.9)	3.70 (t, 9.0)	3.6 (um) ^c	4.40 (dd, 2.8, 11.5)	1.19
7						ļ	
ring B	4.45 (d, 7.8)	5.09 (dd, 10.4)	4.93 (dd, 3.4)	5.33 (dd, 1.1)	3.86 (dt, 7.5)	4.1 (3 H, um) ^c	
		,	other the state of		And the paper of t		

Prorsolutions in CHCl3 (internal Me4Si). A and B stand for reducing and non-reducing units, respectively. 'Unresolved multiplet.

NOTE 251

ively without extensive hydrolysis of the interglycosidic linkage. Treatment of tert-butyl β -lactoside hepta-acetate (7) with either trifluoracetic acid in CH₂Cl₂ at -10° or titanium tetrabromide at room temperature under nitrogen gave 2,3,6,2′,3′,4′,6′-hepta-O-acetyl-lactose in yields (not optimized) of 68 and 75%, respectively. Likewise, the hepta-O-benzyl analogue of 7 could be converted into hepta-O-benzyl-lactose in 65% yield.

EXPERIMENTAL

General. — Organic solutions were concentrated in vacuo at \leq 40°. ¹³C-N.m.r. spectra were recorded at 25.2 MHz with a Bruker WP-80 spectrometer on solutions in CHCl₃ (internal Me₄Si). ¹H-N.m.r. spectra were recorded at 250 MHz with a Bruker AC-250 spectrometer. Optical rotations were measured at 20° with a Perkin–Elmer MC-241 polarimeter. Flash chromatography was performed on Matrix Silica 35–70 NY (Amicon) and t.l.c. on Silica Gel F254 (Merck) with detection by charring with 10% sulfuric acid in ethanol. Melting points were determined on a Buchi apparatus and are not corrected. Monosaccharide glycosyl halides were prepared by a standard procedure⁹. Disaccharide glycosyl halides were obtained by reaction of peracetylated derivatives with hydrogen bromide in glacial acetic acid¹⁰.

Elemental analyses were performed at the Service Central de Microanalyse du Centre National de la Recherche Scientifique E.N.S.C.M. (Montpellier).

Acetylated tert-butyl monosaccharide glycosides (1-4). — A mixture of mercuric oxide (0.508 g), mercuric bromide (0.034 g), Drierite (0.4 g), and tert-butyl alcohol (5 mL) was stirred for 15 min under nitrogen at 25°. The acetylated glycosyl bromide (2.5 mmol) was then added, and the suspension was stirred for 30 min until t.l.c. monitoring showed complete disappearance of the glycosyl bromide.

The mixture was diluted with CH₂Cl₂ and filtered through Celite, which was then washed with CH₂Cl₂. The combined filtrate and washings were concentrated *in vacuo* to remove *tert*-butyl alcohol, and a solution of the residue in CH₂Cl₂ was washed with aqueous 10% KI, water, saturated aqueous sodium thiosulfate, and water, dried (Na₂SO₄), and concentrated. Flash chromatography (EtOAc-hexane) of the residue afforded analytically pure *tert*-butyl glycosides. See Tables I and III for physical constants and n.m.r. data.

Acetylated tert-butyl disaccharide glycosides (5-7). — The above procedure was used except that dichloromethane (5 mL) was added to the initial mixture in order to dissolve the starting materials. See Tables II and III for physical constants and n.m.r. data.

Selective removal of the tert-butyl group. — (a) To a solution of tert-butyl β -lactoside hepta-acetate (7) (70 mg, 0.1 mmol) in CH₂Cl₂ (3 mL) at -10° was added trifluoroacetic acid (3 mL). When t.l.c. showed that no 7 remained, the mixture was diluted with CH₂Cl₂ (50 mL), washed with saturated aqueous hydrogencarbonate and water, then dried (Na₂SO₄), and concentrated. Column chromatography (hex-

ane-ethyl acetate) of the residue gave lactose hepta-acetate as an oil (46 mg, 65%), $[\alpha]_D^{20} + 30.5^{\circ}$ (c 1, pyridine). ¹³C-N.m.r. data: δ 101.1 (Gal C-1), 90.1 (Glc C-1 α), and 95.2 (Glc C-1 β).

The hepta-O-benzyl analogue of 7 was treated as above to afford the corresponding reducing sugar, $[\alpha]_D^{20} + 15^{\circ}$ (c 1, chloroform). ¹³C-N.m.r. data: δ 103 (Gal C-1), 91.5 (Glc C-1 α), and 97.6 (Glc C-1 β).

(b) To a solution of 7 (692 mg, 1 mmol) in CH_2Cl_2 -EtOAc (3.3 mL, 1:0.1) at 0° under nitrogen was added titanium tetrabromide (877 mg, 2.4 mmol). The mixture was stirred for 45 min, then diluted with toluene (11 mL), acetonitrile (1.5 mL), and sodium acetate (2.6 g), stirred vigorously until clear, then filtered, and concentrated. Column chromatography (hexane-ethyl acetate) afforded lactose heptaacetate (426 mg, 75%).

ACKNOWLEDGMENT

We thank G. Fontaine for technical assistance.

REFERENCES

- 1 R. R. Schmidt, Angew. Chem. Int. Ed. Engl., 25 (1986) 212-235.
- 2 J. M. LACOMBE, A. A. PAVIA, AND J. M. ROCHEVILLE, Can. J. Chem., 59 (1981) 482-489.
- 3 P. A. RISBOOD, L. A. REED, AND L. GOODMAN, Carbohydr. Res., 88 (1981) 245-251.
- 4 W. A. R. VAN HEESWIJK, H. G. J. VISSER, AND J. F. G. VLIEGENTHART, *Carbohydr. Res.*, 58 (1977) 494–497.
- 5 V. A. DEREVITSKAYA, E. M. KLIMOV, S. A. POGOSYAN, AND N. K. KOCHEKOV, Bull. Acad. Sci. USSR, Div. Chem. Sci., (1972) 1584–1585.
- 6 B. LINDBERG, Acta Chem. Scand., 3 (1949) 151-156.
- 7 B. HELFERICH AND W. OST, Chem. Ber., 95 (1962) 2612-2615.
- 8 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-67.
- 9 R. U. Lemieux, Methods Carbohydr, Chem., 2 (1963) 221-222.
- 10 R. G. EDWARDS, L. HOUGH, AND A. C. RICHARDSON, Carbohydr. Res., 55 (1977) 129-148.